



CDP MODIFY Functions

(with Command Line Usage)

Functions to MODIFY soundfiles

(Names in brackets mean that these are separate programs. The others are sub-modules of MODIFY.)

BRASSAGE
Granular reconstitution of
soundfile

CONVOLVE
Convolve the first soundfile with the second

[DSHIFT]
Adds Doppler shift to panning

FINDPAN
Find stereo-pan position
of a sound in a stereo file

LOUDNESS
Alter loudness or balance of
sound

[NEWDELAY]
Delay with pitch-defined output sound

[PHASE]
Invert phase or enhance stereo separation of a sound

RADICAL
Radically modify:

1. Reverse
2. Shred
3. Scrub
4. Resolution
5. Ring-Modulate
6. Cross-Modulate
7. Quantise (c.f. Resolution)

REVECHO
Add reverberation or echo to the
sound

SAUSAGE
Brassage on several sources

SCALEDPAN
Distribute sound in
stereo space, scaling pan data to soundfile duration

SHUDDER
Shudder a stereo soundfile

SPACE
Spatialise, or alter the spatialisation
of, a soundfile

SPACEFORM
Create a sinusoidal spatial
distribution data file

SPEED
Change speed (& pitch) of sound

STACK
Create a mix that stacks
transposed versions of source on top of one another





ALSO SEE:
[FASTCONV]

Multi-channel fast convolution
[WRAPPAGE]

Granular reconstitution of one or more soundfiles over multi-channel space
[GRAINMILL]

Stand-alone graphic program for BRASSAGE and SAUSAGE

file:///E:/CDP/DOCS/!PRINT/cxreverb.htm#FASTCONV
file:///E:/CDP/DOCS/!PRINT/cgrogrns.htm#WRAPPAGE
file:///E:/CDP/DOCS/!PRINT/cgrnmill.htm


MODIFY BRASSAGE – Granular reconstitution of
soundfile

Usage

modify brassage 1 infile outfile pitchshift

modify brassage 2 infile outfile velocity

modify brassage 3 infile outfile density pitch amp
[-rrange]

modify brassage 4 infile outfile grainsize
[-rrange]

modify brassage 5 infile outfile density 



modify brassage 6 infile outfile velocity density
grainsize pitchshift amp space bsplice esplice 

            
[-rrange] [-jjitter] [-loutlength]
[-cchannel] [-x] [-n]



modify brassage 7 infile outfile velocity density hvelocity hdensity

            
grainsize   pitchshift   amp  space
  bsplice   esplice

            
hgrainsize hpitchshift hamp hspace hbsplice hesplice

            
[-rrange] [-jjitter] [-loutlength]
[-cchannel] [-x] [-n]


Modes

1 PITCHSHIFT: shift the pitch of infile while retaining
(more or less) the same duration

2 TIMESTRETCH: stretch or compress the infile in time,
while retaining the same pitch

3 REVERB: use 3 parameters to create a kind of reverberant effect


pitch – transposition factor (Range: -0.33 to 0.33)

4 SCRAMBLE: random reordering of grains within a timeframe

NB: To get a scramble effect, you do need to
provide a timeframe (in ms) with -
rrange to
overcome the default setting of 0.

5 GRANULATE: 'granulate' (put a grainy surface on) a source


A density of 1.0 will achieve this; < 1 will introduce
gaps, and values > 1.1 (out of a
range which ends at 2.0)
begin to sound smooth again.

6 BRASSAGE: powerful segmentation/fragmentation procedures
using constants or time-varying
breakpoint files

7 FULL MONTY: finely tuned granular textures using parameter ranges
with upper and lower
limits, which can be set as constants or as time-varying
breakpoint files, or mixtures of the two.
You are recommended to use
the graphic program GrainMill for this, if it is available.

Parameters

In Sound Loom, the upper limit parameters for Mode 7, which here begin with an 'h',
are called 'limit' instead. A number of the parameters are also given different names.
These are noted below, prefixed with 'SL:'.



infile – soundfile to be processed, normally, but not
necessarily, mono (see space)

outfile – output soundfile written after processing

velocity (SL: timeshrink) – speed of advance in infile, relative to outfile (Range: >= 0)

This is the inverse of a timestretch (i.e., 1/n: higher
values make the output shorter,
lower values – less than 1
– make it longer). This permits an infinite timestretch.
Remember this when using Mode 2.

density – amount of grain overlap (Range: > 0)

Values < 1 leaves intergrain silence, i.e., gaps. Extremely small
values will cease to
perform predictably.

grainsize – size of the grains in milliseconds (Range: must be
> 2 * the length of the splices;
overall range: 2.0ms to 1997.12ms;
Default: 50ms)

pitchshift – transposition of grains in + or - (fractions of)
semitones

amp (SL: grain loudness range) – gain applied to the grains (Range: 0 to 1; Default: 1.0)

Use only if you want amplitude to vary over a range &/or
in time.

bsplice (SL: start splice) – length of start-splices on grains in ms (Default: 5)

esplice (SL: end splice) – length of end-splices on grains in ms (Default: 5)

space (SL: spatial position) – set stereo position in outfile 0 = L, 1 = R (Range: 0 to N)
-rrange
(SL: search range) – of search for next grain, before infile 'now' (Default: 0 ms)

-jjitter (SL: scatter) – randomisation of grain position; Range 0 to 1 (Default: 0.5)

-loutlength – maximum outfile length (if end of
data is not reached)

Set to zero (the Default) for this parameter to be ignored.
But if velocity is 0
anywhere, outlength
must be given.

-cchannel (SL: channel to extract) – extract and work on just one channel of a stereo input
(Range: 1 or 2) Set channel to 0 (the Default) for this parameter to be ignored.


-x – do exponential splices (Default: linear)

-n – no interpolation for pitch values (quick but dirty)

The presence of the upper limit parameters –

  hvelocity (SL: timeshrink limit), 

  hdensity (SL: density limit), 

  hgrainsize (SL: grainsize limit), 

  hpitchshift (SL: pitchshift limit),

  hamp (SL: loudness range limit),

  hbsplice (SL: startsplice limit),

  hesplice (SL: endsplice limit), and

  hspace (SL: spatial position limit)

– make it possible to specify a range of values. When set, the program chooses
random values for that parameter for each grain between the lower and upper
limits. For example, if pitchshift is -3 and hpitchshift is 4, the pitch of each grain will
be somewhere within the interval of a perfect 5th. 
NB:   Furthermore, any of these parameters may vary in time (provide the name of a
time value breakpoint file).

All parameters – except outlength and channel
may vary over time.



Understanding the MODIFY BRASSAGE Process

MODIFY BRASSAGE is a re-working of the original CDP program called
GRANULA. Those with a
PC system can (and are advised
to) use the graphic version, GrainMill, with built-in graphic
breakpoint editing. This command-line version offers greater flexibility
with the shapes of the
grains, handled with the bsplice and
esplice parameters. The fact that velocity is an inverse
function makes stretching time less intuitive, but allows scope for (even
more) extreme values
than the graphic version.

MODIFY BRASSAGE is mainly designed as a way of texturing pre-existing
sample data. It is
therefore not the same as a 'granular synthesis'
program which synthesises sound using granula
techniques. A search
for 'granular synthesis' on the web will provide a great deal of
informatiion
on current work in this area.

This command line is exceptionally complex, especially because the
low and high values for a
number of (optional) parameters are not
adjacent. (This was done in order to bring the command
line into line
with the requirements of a graphic interface.) It is recommended that
you create a
template batchfile which lines up the parameters as shown
above, that is, with a newline which
enables you to put the high values
directly under the low values. But remember to delete the
newline
before saving (or it won't read the rest of the command line) and save to
a new name so
that you don't overwrite your template.

The flexibility with which the parameters can be handled is enormous.
You can have:

constant values
random values selected (by the program) from a range specified by low and high limits
time-varying values specified by breakpoint files
a mixture of constant values and breakpoint files, such as
a constant low limit and a time-
varying high limit, or v.vs,
or even breakpoint files as both lower and upper limits. (NB:
the 'lines' created by joining up the points in the files for the
upper and lower limits must
not cross: at any given time location
in the two files, a lower-file value must not be higher
than a
higher-file value, and v.vs.).

The different modes of the program now make it easier to realise a
specific musical objective, in
the manner of presets. Use Modes 6
and 7 for 'brassage' (serious fragmentation of soundfiles),
for
more control and for creating the more complex, granular types of texture.

The three key parameters are:


grainsize – how coarse or fine the granulation
will be; 'granular synthesis' typically uses
gransizes of less
than 50ms
velocity – how the infile is read; it
actually relates to grainsize:

a value of 1 means that the read-steps are the
same as the grainsize, and the length
of the
outfile will therefore be the same as that of
the infile
a value less than 1 means that the read-steps
are shorter than grainsize, material
will overlap
and the length of the outfile will be longer than
that of the infile: time-
stretch
a value greater than 1 means that the read-	steps
are longer than grainsize,
material will be skipped,
and the length of the outfile will be shorter than
that of the
infile: time-compression

file:///E:/CDP/DOCS/!PRINT/cgrnmill.htm


density – how the outfile is constructed:
a value of 1 means that the outfile
lays out grainsize grains end to end; the
infile and
the outfile will be the same
length, but the outfile will have a 'granulated'
surface
texture due to the action of the splices on
each grain.
a value less than 1 means that the time between
grains in the outfile will be longer
than the
grains themselves, introducing audible gaps ('pointillist'
effects). E.g., a
grainsize of 0.05 (50ms) divided by
0.5 (a value for density less than 1) = 0.1. Thus
grains only 5/100ths of a second long will
occur every tenth of a second in the outfile,
leaving
significant gaps of 95/100ths of a second.
a value greater than 1 means that the time
between grains in the outfile will be
shorter
than the grains themselves, causing the grains to
overlap in time: the next
grain will start before the
previous has finished. Thus two (or more) grains will
be
mixed in the outfile, making the texture more
dense. If there is no pitch transposition
(of the grains),
this will be heard as a more intense, thicker sound, with
internal
'edges' determined by the nature of the grains
and their splice slopes. If there is
pitch transposition
(of the grains), the grains will be scattered in a vertical
space
defined by the pitch range. E.g., a grainsize
of 0.05 (50ms) divided by 2.0 (a value
for density
greater than 1) = 0.025. Thus grains which are
5/100ths of a second long
will occur
every 2.5 100ths of a second, overlapping
therefore at each grain's half-
way point. This is how
the 'massive' textures characteristic of granular synthesis
are
produced.

The other parameters serve to create qualitative differences in the
granular textures.

The most noticeable of these is pitchshift, which adds or
subtracts semitones or fractions of
semitones to/from each grain.

Using constants, you can 'tune' the texture, perhaps creating
a number of differently tuned
texture streams which will then be
mixed in some way to create textures with a harmonic
flavour.
Using ranges, you can create thick, churning textures by
placing a high density output
within a narrow pitch band, or
conversely, widely scatter grains (thickly or thinly depending
on density) over a wide range.
Using a constant and a breakpoint file makes it possible
to create, for example, triangular
shaped ranges (i.e., pitch
fields), the base being the constant, and the triangular shape
affected by the breakpoint file.
Using double-breakpoint ranges make it possible to design
pitch fields which move through
time in a variety of patterns.
But bear in mind that the pitch shape of the original material
forms the starting point for these transpositions. Also remember
that the two breakpoint
shapes (lower and upper) are not supposed
to cross (lower rising above the line of the
upper, or upper
dipping down below the line of the lower).



The amplitude parameter is also very important, for variation in
amplitude add a natural
suppleness to the texture, and can also be used
to create aurally directional movement:
crescendi and decrescendi. In
case of overload, which the program does its best to avoid, this
parameter
can be used to scale down the output (use as a constant). The maximum
value for
amplitude is 1.0, so it is not possible to scale the
infile amplitude upwards. There is usually some
loss of signal
level due to all the splices, so it is generally wise to ensure that the
infile is at or
close to a maximum level.

The space parameter is another way to enrich the output by using
left and right limits to scatter
the grains in horizontal space or have
the granular stream move in a directional manner. Using
constants enable
you to locate the output at a specific point in the horizontal plane.

Range and jitter are another way to loosen things up.
The former provides a search range in
the infile from within
which grains are selected, and the latter adds a further degree of
randomisation to the time placement of grains in the outfile.
With short grainsize and high
density, jitter
will have a more a more subtle effect, noticeable in many cases as a
modulation or
softening of the comb filter effect arising from
overlapping grains. When density is 1 (in which
grains are
normally end-to-end), it will have the effect of overlapping some
grains, while leaving
(very small) spaces between others.

Musical Applications

One of the main pioneers in this area is Barry Truax. I recommend
you try to get to listen to his
famous compositions Riverrun,
The Wings of Nike, and Pacific. Also see his articles:

"Composing with real-time granular sound" (Perspectives
of New Music 28(2) 120-134
"Discovering Inner Complexity: Time Shifting and
Transposition with Real-time Granulation
Technique" (CMJ
18(2) 38-48

Also see The Computer Music Tutorial by Curtis Roads (et al.),
MIT Press, 1996), pp. 168-184
and pp. 440-444.

It is also useful to study the role of texture in 20th century
composition. The relationship of
melody and textural accompaniment in
the work of Bohuslav Martinu indicate how the
'background' often becomes
aural 'foreground'. Pieces such as Stockhausen's Momente and
Gruppen are classic examples of a full-blown collage/texture
technique, as are the amazing
collages in Berio's Laborintus II.

But 'brassage' and 'granular' textures really came into their own once
the computer became a
musical tool, when it became possible to create
sound textures out of tiny fragments of sound,
e.g., 0.035 sec long.
MODIFY BRASSAGE provides an enormously powerful tool with which to
explore the effects and side-effects of these processes.

If you have the CDP GrainMill program, you will be able to realise and study the HTML tutorial
for it written by Philippos
Theocharidis when he was at the University of Newcastle. The sounds
can be made very easily by loading the settings files he provides.

file:///E:/CDP/DOCS/!PRINT/cgrnmill.htm


For the moment, the best way into the program is first of all to
run Modes 1-5 to explore the
presets. Don't be afraid to
try extreme values, for they will more easily reveal what this
wonderful
program can do. After that point, I recommend that you revise the section
above
about the 'three key parameters' and try out the different
settings described for grainsize,
velocity and
density. (But do use template batch files for Modes 6
and 7.)

As a basic point of reference, consider the following combinations:

velocity density result in the outfile

< 1 < 1 time-stretched, with sonic material repeated, but with gaps in the
outfile

< 1 > 1 time-stretched, with sonic material repeated and overlapping grains
in the
outfile

> 1 < 1 time-compression, with sonic material skipped, and gaps in the
outfile

> 1 > 1 time-compression, with sonic material skipped, and overlapping
grains in
the outfile

The addition of a pitch range to the above may make the effects more
observable. With time-
varying parameters, you can move fluidly
between these various basic configurations.

ALSO SEE:  MODIFY SAUSAGE, which is able to apply
the same functionality to several source files.

End of MODIFY BRASSAGE




MODIFY CONVOLVE – Convolve the first sound with
the second

Usage

modify convolve 1 insndfile1 insndfile2 outsndfile

modify convolve 2 insndfile1 insndfile2 outsndfile transposfile




Parameters

insndfile1 – first input soundfile to be convolve with

insndfile2 – the second input soundfile, which must not be longer the insndfile1; both soundfiles
must have the same channel count

outsndfile – output soundfile

transposfile – textfile of time semitone-transposition transposition pairs

Understanding the MODIFY CONVOLVE Process

Convolution is based on complex mathematical operations between two source soundfiles. There
is a great deal of information about convolution available in Wikipedia, but your editor does not
know just which ones Trevor Wishart uses in his program.

Musical Applications

The result of convolution is unpredictable but fascinating. The operation of this particular sub-
module can take rather a long time, so you are recommended also to make use of FASTCONV.

End of MODIFY CONVOLVE


file:///E:/CDP/DOCS/!PRINT/cxreverb.htm#FASTCONV


DSHIFT – Add Doppler shift to panning

Usage

dshift [-dN] inpanfile outtransposefile [distance between speakers]



Example command line to create a Doppler effect:


dshift -d15 pan.brk dshift.brk 12.5

Parameters

-dN – a flag to set the time it takes for a sound to change direction. N is the time in milliseconds.
Default: 10ms. This flag is useful in order to avoid clicks.

inpanfile – input PAN breakpoint file to use when adding Doppler effect

outtransposefile – output transposition file (in semitones) to use with MODIFY SPEED Mode 2 (on
the soundfile panned with the PAN breakpoint file) to create the Doppler effect

distance_between_speakers – optional parameter to specify the space in meters between the
speaker pair that will play back the sound


Understanding the DSHIFT Function

The Doppler effect is the phenomenon of pitch change that we hear when something emitting a
loud noise, such as a horn or siren, goes quickly past us. This program was written by Rajmil
Fischman. It has been implemented in Soundshaper, but not yet in Sound Loom, either on the PC
or on the MAC. It can be run from the Command Line on the PC, but has not yet been ported to
the MAC.

There are 3 main steps to creating this effect with DSHIFT:


1. Start with a pan breakpoint file and use it with PAN (MODIFY SPACE 1) to create a sound
that moves between the speakers in a stereo field.

2. Then use DSHIFT to use the pan breakpoint file again as a guide to creating the Doppler
pitch change effect. The output of DSHIFT is a pitch transposition file in semitones.

3. Run MODIFY SPEED with the panned soundfile and the pitch transposition file as inputs,
to create the final, Doppler-shifted, soundfile.

To operate DSHIFT in Soundshaper:

1. Pan a mono sound as normal, using a breakpoint pan file. The resulting panned soundfile is
the output of this process.

2. Select SPARE FILE and load the pan breakpoint file.
3. Run DSHIFT from the Data Menu: "Doppler-Shift Transposition".
4. Name the output breakpoint transposition file (in semitones); the default name is

'dshift.brk'.
5. Deselect SPARE FILE (the pan file) and run MODIFY SPEED Mode 2 (semitones), with the

panned soundfile you made in Step 1 as the soundfile input and 'dshift.brk' (or your own
name) as the time-varying transposition file. The output of SPEED is a panned soundfile
that also changes in pitch.



Musical Applications

This is a 'real life' acoustic effect that can be used to enhance literal recreations of a natural
environment. The case that most easily comes to mind is that of a vehicle passing by, especially
if it is blasting a horn or siren as it moves. More abstract sounds can be used, with a 'real life'
effect adding verisimilitude to a sound coming from a strange or unfamiliar source.

End of DSHIFT




MODIFY FINDPAN – Find stereo-pan
position of a
sound in a stereo file

Usage

modify findpan infile time



Parameters

infile – input stereo soundfile, which has been
panned over time in the stereo field

time – the time-point in the sound at which
you wish to query the pan position


Understanding the MODIFY FINDPAN Function

If you are carefully positioning sounds in stereo-space it
might be useful to know exactly where
on the stereo-stage a
panning sound is at any particular time. This process assumes
the input is
an (originally mono) sound which you then panned
so that it moves around the stereo space.

The process uses the file loudness data on the two channels
to calculate where in the stereo
space the sound appears to be.
It assumes that the infile contains a sound that has
previously
been panned to a position in the stereo field. If
this is not the case, the results will be
misleading. For
example, it could be a stereo file which is not in fact moving
across the spatial
field.

It is important that the input soundfile was originally mono.

If it had always been a stereo file, you could not find out where anything is in the stereo
stage by comparing the left and right channels – they could, for example, carry completely
different sounds.
If the file were originally mono and then panned, the left and right channels will have the
same signal, but at different levels.
Thus, by comparing those levels, you can tell where the sound is on the stereo stage.

Musical Applications

Suppose you have made a sound that moves about in space, such as
across the horizontal field
from left to right. Now you want to
place another sound such that it is in exactly the same spatial
location as the moving sound at a specific time point. The question
is: where is that spatial
location?

MODIFY FINDPAN asks you to supply a stereo input soundfile and a time.
It then returns the pan
location of the input soundfile at this time-point.
You then use this information to specify the
placement of the sound you
want to add to the mix.

End of MODIFY FINDPAN




MODIFY LOUDNESS – Alter balance or loudness
of
sound

Usage

modify loudness 1 infile outfile gain

modify loudness 2 infile outfile gain

modify loudness 3 infile outfile -llevel

modify loudness 4 infile outfile -llevel

modify loudness 5 infile infile2 outfile

modify loudness 6 infile outfile

modify loudness 7 infile infile2 [infile3 ...]

modify loudness 8 infile infile2 [infile3 ...]
outfile


Modes

1  GAIN: adjust level by factor gain

2  dBGAIN: adjust level by dB gain

3  NORMALISE: force level (if necessary) to the maximum possible,
or to the level given (Range:
0 to 1)

4  FORCE LEVEL: force level to maximum possible, or to the
level given (Range: 0 to 1)
5  BALANCE: force the maxmimum level of infile to the
maximum level of infile2

6  INVERT PHASE: invert phase of the sound

7  FIND LOUDEST: find loudest of 2 or more files
8  EQUALISE: force all of 2 or more files to level of loudest file.
The input files are rescaled in
input order, with output names as
outfile, outfile1, outfile2, outfile3 etc.


Parameters

infile – soundfile to have its level altered
infile2 – soundfile to which infile is to be balanced

outfile – resulting soundfile, with readjusted level. When
there are 2 or more input files, outfile is
a generic name to
which are added '1', '2' etc. to identify the matching output files.

gain – in Mode 1, floating point multiplier:
< 1.0 reduces level, > 1 increases level;

   OR, in Mode 2, level expressed in dB (Range: -96dB
to 96dB). NB: every drop of -6dB halves
the previous level.

NB: a gain value of -1 inverts the phase of
the sound. This can sometimes be used to
maintain high
signal levels without clipping.
See SUBMIX GETLEVEL.

-llevel – amplitude level (Range: 0 to 1)

file:///E:/CDP/DOCS/!PRINT/cgromixr.htm#GETLEVEL


Understanding the MODIFY LOUDNESS Process

Information about the current level of a soundfile is given by
SNDINFO MAXSAMP. Information
about
the units used to express loudness is summarised in the chart
Getting a Handle on dB
values.
This chart shows both gain multipliers and dB values. (Click on
'Back' on your Browser to
return from these locations.)

It is best to adjust level earlier rather than later in a set of
processes. Also, it is important to
start with a source sound which
has a reasonable signal level. Artefacts will appear if a low signal
is boosted too much.

Level overflows reported by Csound are usually due to a fault
in the orchestra file.

Musical Applications

This will be one of the 'frequently used' functions, e.g., to:

readjust a level which has either dropped a little too much
or overflowed due to processing
to boost a source signal which is a little too low to enter
into a processing sequence
to reduce the level of a soundfile after PVOC (the Phase
Vocoder) has reported overflow.
You can use the gain
factor recommended by PVOC, or double-check levels with MAXSAMP
before applying gain.
When filters of time-varying Q are used, the output level
tends to drop as the Q increases.
This can be compensated for
by using MODIFY LOUDNESS in Mode 5 (Balance sources),
submitting the original file and the filtered file as the two
sources. The resultant soundfile
will have the sound of the
filtered file with the amplitude contour of the original sound.
And it can also be used to impose an envelope on a sound (just like ENVEL IMPOSE), if you
use a time-varying gain value in Mode 1.

End of MODIFY LOUDNESS


file:///E:/CDP/DOCS/!PRINT/cgroinfo.htm#MAXSAMP
file:///E:/CDP/DOCS/!PRINT/cgroinfo.htm#UNITSGAINS


NEWDELAY – Delay with pitch-defined output sound

Usage

newdelay newdelay insndfile outsndfile midipitch mix feedback 

Example command line to create a pitch-specified delay :


newdelay newdelay in.wav out.wav 67 0.75 0.1

Parameters

insndfile – input soundfile

outsndfile – output soundfile

midipitch – pitch of the output, expressed as a MIDI Pitch Value. MIDI Range: -76 to +136. (See
Notechart)

mix – the amount of delayed signal in the final mix. 0 gives a 'dry' result, 1 a 'wet' result

feedback – produces resonance related to delay time (with short times)

midipitch may vary over time.

Understanding the NEWDELAY Process

CDP already has a time-variable delay in MODIFY REVECHO, Mode 2. This program specifies
the delay time as a MIDI (or pseudo-MIDI) pitch value. In a delay line, with sufficient feedback,
very short delays of typically less than 40ms (25Hz) create a pitched resonance. Midipitch allows
you to set this delay time according to the required pitch. However, discrete echoes can also be
expressed as a pseudo-MIDI value (e.g., -12 produces delays of about 1/4 sec.), thereby making
an important connection between pitch and rhythm.

End of NEWDELAY NEWDELAY


file:///E:/CDP/DOCS/!PRINT/notechrt.htm


PHASE – Invert phase or enhance stereo separation of
a sound

Usage

phase phase 1 insndfile outsndfile

phase phase 2 instereofile outstereofile [-ttransfer]



Example command line to create phased signal:


phase phase 1 four.wav fourinv.wav

Modes

1  Invert phase of a sound.

2  Enhance stereo separation by phase shifting. Input file must be stereo.

Parameters

infile – input soundfile; must be stereo for Mode 2

outfile – output soundfile, stereo in Mode 2.

-ttransfer – amount of signal to be used in phase-cancellation. Range: 0 to 1. 1 = all.


Understanding the PHASE PHASE Process

In Mode 1 playback of the output inverted soundfile shows that there is no audible difference
from the input soundfile. However, if you mix the original sound with the phase-inverted sound,
you will generate a silent output: positive and negative amplitude values cancel out. However, if
you mix the input and output with an offset, you get signal and hear an overlap of the two
soundfiles (the cancelling out does not fully happen). You can try this with SUBMIX MERGE.

Also see: MODIFY LOUDNESS Mode 6, which likewise inverts the phase.

Mode 2 is supposed to be a means of creating an enhanced stereo image by suppressing any
aspects of the Left image which have bled to the Right, by adding (part of) the phase inverted
Left signal on the Right, and vice versa. T Wishart writes: I learned of this idea from a mixing
engineer I met in France, but I'm still not convinced that this achieves anything except in very
special circumstances (with particular types of material). The output may sound the same as the
input, except perhaps on the largest PA systems.

Musical Applications

Inverting the phase of signals might be appropriate in some mixing or texturing procedures. See
the technical literature.

End of PHASE PHASE


file:///E:/CDP/DOCS/!PRINT/cromixr.htm#MERGE%22


MODIFY RADICAL – radical modifications: Reverse,
Shred, Scrub, Lower Resolution, Ring Modulate, Cross
Modulate, Quantise

Usage

modify radical 1 infile outfile

modify radical 2 infile outfile repeats chunklen
[-sscatter] [-n]

modify radical 3 infile outfile dur [-ldown]
[-hup] [-sstart] [-eend]

modify radical 4 infile outfile bit_resolution
srate_division

modify radical 5 infile outfile modulating-frq

modify radical 6 infile1 infile2 outfile

modify radical 7 infile1 outfile bit_resolution


Modes

1  REVERSE: Sound plays backwards

2  SHRED: Sound is shredded, within its existing duration

3  SCRUB BACK & FORTH: As if hand-winding tape spools over a
tape head

4  LOSE RESOLUTION: Sound is converted to a lower sample rate or
bit-resolution

5  RING MODULATE: Against input modulating frequency, creating
sidebands

6  CROSS MODULATE: Two input soundfiles are multiplied, creating
complex sidebands

7  QUANTISE: Sound is converted to specific bit-resolution (mid-rise).


Parameters

infile – input soundfile

infile2 – 2nd input soundfile, for cross modulation


outfile – output soundfile written after processing

repeats – number of repeats of shredding process

chunklen – average length of chunks to cut and permutate

-sscatter – randomisation of cuts (Range: 0 to K,
where K = duration of infile/chunklen Default =
1)

If scatter = 0, reorders without shredding
NB1: chunklen * scatter must be less
than the length of the program's sound buffer
(Default is 1 Mb
or the setting for CDP_MEMORY_BBSIZE)
Scatter results in chunks of variable length.
NB2: If the input sound is greater than the internal
buffer length, each buffer of sound is
shredded independently

-n – use this flag for a smoother output

dur – minimum length of outfile required

-ldown – lowest downward tranposition in semitones

-hup – highest upward transposition in semitones

-sstart – scrubs start before time start seconds


-eend – scrubs end after time end

bit_resolution – Range: 1 - 16 Default 16-bit.




srate_division – divide the sample-rate. Range: 1 to 256 Default 1 (normal)

The value entered will be rounded to a power of 2
Works only on Mono files

modulating-frq – number of cycles per second

Understanding the MODIFY RADICAL Process

Let's take this Mode by Mode:

Mode 1 REVERSE: The soundfile is re-written back to front: starting at the end and
ending at the beginning.


Mode 2 SHRED: The soundfile is (randomly) segmented, and these segments reordered
by means of a permutation process. As the number of repeats increases, it gets more and
more
jumbled, literally 'reducing it to shreds'. The -n adds splicing that results in a
smoother output.


Mode 3 SCRUB: This is an acceleration/deceleration
process which models an editing
procedure used in the 'classical'
tape studio: the desired edit point was found by turning
the
tape spools by hand so that the tape moved (very slowly!) across
the tape head. You
could hear locate exactly where silence
began or ended, where clicks came etc., although
the sound was
very low because of the slow speed.



The SCRUB function could also be used creatively, to create extreme speed modifications of
the source sound on the tape, e.g. an abrupt acceleration-deceleration as the tape went
from not-moving, to fast-moving, to stopped as the hands jerked the tape across the
heads.


Mode 4 LOSE RESOLUTION: Reducing the sample rate reduces the level of the Nyquist
frequency (sample_rate/2), thereby
lowering the frequency level which can be safely
handling during
processing. Lowering the bit-resolution reduces the precision of the
numerical expression of the data, making the digital 'quantisation'
of the sonic material
coarser. This means that time-varying
information is lost.


Mode 5 RING MODULATION: multiplies two (bipolar)
signals. In this case, one signal is a
soundfile and the other
is a modulating_frq. This creates two 'sidebands' which
are the sum
and the difference of the two signals, while the
carrier signal disappears. The result is a
timbrally 'hollow'
sound. (See Curtis Roads, The Computer Music Tutorial,
pp. 215-220).


Mode 6 CROSS MODULATION: multiplies two different
soundfiles, producing a very
strange mixture of the two. Each frequency of the second sound ring-modulates the first
sound.


Mode 7 QUANTISE: This lowers the bit-resolution, like the second parameter of LOSE
RESOLUTION.



Musical Applications

Again, Mode by Mode:

Mode 1 REVERSE: Reversing a sound can be used simply
as a first stage in moving a
familiar sound towards more abstract
sonic material. Also, sounds can have a very
characteristic
'signature' when played backwards (e.g., piano tones sound
like crescendoing
chords), so reversal can be used to achieve
these effects.


Mode 2 SHRED: Jumbling segments can be used for humorous effect, to texture a sound,
or to create a series of randomly
placed impulses (if the sound has sharp attacks in it).


Mode 3 SCRUB: Scrub can be used for crazily improvised changes of speed within a
sound.


Mode 4 LOSE RESOLUTION: These processes will produce a
deliberately coarse sound.
'Rough' sound material is sometimes
useful as a serendipitous input to other processes.


Mode 5 RING MODULATION: achieves a timbral alteration
which makes it sound thin and
hollow, depending on the
modulating_frq.


Mode 6 CROSS MODULATION: another wierd and wonderful
effect which the CDP
System allows you to explore!

End of MODIFY RADICAL




MODIFY REVECHO – Create reverberation, echo
or
resonance around the sound

Usage

modify revecho 1 infile outfile delay mix feedback tail
[-pprescale] [-i]

modify revecho 2 infile outfile delay mix feedback
lfomod lfofreq lfophase lfodelay tail
[-pprescale] [-
sseed]

modify revecho 3 infile outfile [-ggain]
[-rroll_off] [-ssize] [-ecount]


Modes

1 STANDARD DELAY: with feedback & mix (0 = dry) of original
and delayed signal

2 VARYING DELAY: with low frequency oscillator varying the
delay time

3 STADIUM ECHO: create stadium P.A. type echoes

Parameters

infile – soundfile to process

outfile – output soundfile

delay – delay time, in milliseconds

mix – amount of delayed signal in final mix: 0 gives 'dry'
result (Range: 0 to 1)

feedback – produces resonances related to delay time (with
short times) (Range: -1.0 to 1.0)

tail – time to allow decayed signal to decay to zero
(Range: -1.0 to 1.0)

-pprescale – prescales input level, to avoid overload

-i – inverts the dry signal (for phasing effects)

lfomod – depth of the delay-variation sweep (Range: 0 to 1)

lfofreq – frequency of the delay-variation sweep (negative
values give random oscillations)

lfophase – start-phase of the delay-variation sweep (Range:
0 to 1)
lfodelay – time in seconds before the delay-variation sweep
begins

-sseed – non-zero value gives reproducible output
(with the same seed) where random
oscillations are used (see
lfofreq)

-ggain – to apply to input signal (Default: 0.645654)

-rroll-off – rate of loss of level across stadium
(Default: 1)

-ssize – multiplies average time between echoes (the
Default time between echoes of 0.1 sec)

-ecount – number of stadium echoes (Default and max: 23)


Understanding the MODIFY REVECHO Process

Mode 1 provides a fixed delay time. If a smooth echoey effect is
wanted, be careful to keep mix
on the low side. Remember that
delay is given in milliseconds; after 60ms or so, one
begins to
hear a strong reverberation; after 100 ms the reverberation
begins to 'bounce', and by 200 ms
one begins to hear distinct echoes.
Delay times greater than 1000 will cause repetitions of (all or
much of) the sound. Don't forget to lengthen the tail to
match the delay time.



The mix parameter, in adding in the delayed signal, increases
the reverberant effect. With a short
delay time, this can sound like
the reverberation which occurs in an enclosed space. Feedback
has a similar effect, becoming very pronounced towards a value of 1.0
– rather like the
'feedback' which occurs when a microphone is
placed facing a loudspeaker.

REVECHO Mode 1 – Mapping out the Parameter Space

Name & Mode infile & outfile delay mix feedback tail

modify revecho 1 balsam be1 35 0.3 0.5 0.1

modify revecho 1 balsam be2 35 0.8 0.5 0.1

modify revecho 1 balsam be3 35 0.3 0.8 0.1

modify revecho 1 balsam be4 100 0.5 0.5 0.1

modify revecho 1 balsam be5 200 0.5 0.5 0.2

modify revecho 1 balsam be6 500 0.5 0.5 0.5

Musical Applications

The operation of a standard delay line in Mode 1 ranges from
modest reverberation to echo
effects. The reverberations, however,
tend easily towards rough edges, so for smoother reverbs,
look to
the programs listed below.

In Mode 2, lower values for lfofreq produce a more
noticeable wave motion, while higher values
add to the 'bounce' of
reverberation.

Mode 3 creates a stereo outfile, bouncing the signal
between speakers with a very prominent
delay factor. The idea is that
you hear the signal bouncing around the 'stadium'. The defaults
work
quite nicely, but you can intensify the effect by multiplying the
delay time with the size
parameter. Note that this is a
multiple, so values less than 0 (multiplied with the default time of
0.1 sec) will decrease the delay time. Beyond size = 2, you
are likely to run into insufficient
buffer space, so if you really
want longer delay times, you will have to increase the buffer size
with 'set CDP_MEMORY_BBSIZE=...' (bear in mind the RAM capacity of
your machine). (The
default buffer size is 1 Mbyte and the units
are in 'k': e.g., a BBSIZE of 3000 units is 3 Mbyte).

ALSO SEE: REVERB, RMREVERB, TAPDELAY and NEWDELAY.

End of MODIFY REVECHO


file:///E:/CDP/DOCS/!PRINT/cxreverb.htm#REVERB
file:///E:/CDP/DOCS/!PRINT/cxreverb.htm#RMREVERB
file:///E:/CDP/DOCS/!PRINT/cxreverb.htm#TAPDELAY


MODIFY SAUSAGE – Brassage on several sources

In Release 6, various multi-channel options became available in this update. See the space and
channel parameters.

In Release 7, also see NEWTEX in the GRAIN function group, which also has multi-channel
output options.

Usage

modify sausage infile [infile2 ... ] outfile velocity density
hvelocity hdensity

grainsize   pitchshift   amp  space
  bsplice   esplice

hgrainsize hpitchshift hamp hspace hbsplice hesplice

[-rrange] [-jjitter] [-loutlength]
[-cchannel] [-x] [-n]


Parameters

infile – soundfile to be processed, normally, but not
necessarily, mono (see space)

infile2 ... – additional input soundfiles to process

outfile – output soundfile written after processing

velocity – speed of advance in infile, relative to
outfile (Range: >= 0)

This is the inverse of a timestretch (i.e., 1/n: higher
values make the output shorter,
lower values make it longer). This
permits an infinite timestretch.

density – amount of grain overlap (Range: > 0)

Values < 1 leaves intergrain silence, i.e., gaps. Extremely small
values will cease to
perform predictably.

grainsize – size of the grains in milliseconds (Range: must be
> 2 * the length of the splices;
Default: 50ms)

pitchshift – transposition of grains in + or - (fractions of)
semitones

amp – gain applied to the grains (Range: 0 to 1; Default: 1.0)

Use only if you want amplitude to vary over a range &/or
in time.

bsplice – length of start-splices on grains in ms (Default: 5)

esplice – length of end-splices on grains in ms (Default: 5)

space – set stereo position in outfile 0 = L,
1 = R (Range: 0 to N)

Various multi-channel options are available:

If the space flag is used on a stereo input, the program mixes it to mono
before acting.



file:///E:/CDP/DOCS/!PRINT/cgrogrns.htm#NEWTEX


In order to spread the output of the brassage process over the multi-channel
stage, both the space and hspace parameters should be set (use Mode 7), with
different values. These can now take values from zero to N, the maximum
channel count specified for the output file. The output of the BRASSAGE
process will be spread out between the two output channels specified. (Values
below 1 correspond to positions between channel 1 and the highest output
channel).


For audibly equivalent results to a similar process with normal stereo output, a
higher density value must be set.

range – of search for next grain, before infile 'now'
(Default: 0 ms)

jitter – randomisation of grain position; Range 0 to 1
(Default: 0.5)

outlength – maximum outfile length (if end of data
is not reached)

Set to zero (the Default) for this parameter to be ignored.
But if velocity is 0
anywhere, outlength
must be given.

channel – extract and work on just one channel of a multi-channel input (Range: 1 to N)

Various multi-channel options are available:

Set channel to 0 (the Default) for this parameter to be ignored, or for a
multichannel infile to be mixed to MONO before processing.


Set channel to a positive integer (N), e.g., 3, the Nth channel of the multi-
channel file is selected for processing.


Set channel to a negative integer value (-N), to produce a soundfile. For
example with the setting -c-8, an 8-channel output soundfile will be produced.

Also see the space parameter above.
-d – 

-x – do exponential splices (Default: linear)

-n – no interpolation for pitch values (quick but dirty)

The presence of the upper limit parameters hvelocity,
hdensity,
hgrainsize, hpitchshift, hamp,
hbsplice, hesplice, and hspace make it
possible
to specify a range of values. When set, the program chooses
random
values for that parameter for each grain between the lower
and
upper limits. For example, if pitchshift is -3 and
hpitchshift is 4, the pitch
of each grain will be somewhere
within the interval of a perfect 5th. NB:  
Furthermore, any of these parameters may vary in time (provide the
name of a time value breakpoint file).

All parameters – except outlength and channel
may vary over
time.



Understanding the MODIFY SAUSAGE Process

MODIFY SAUSAGE is in fact a slight variant on MODIFY BRASSAGE in which
the latter is adapted
to accept more than one infile. This
means that the 'brassage' operations will cycle around the
input
soundfiles, producing a more complex sonic texture.

For Reference manual details, see MODIFY BRASSAGE
above.

NB: This program is not the same as the pre-Release 4 CDP program,
SAUSAGE. The older
SAUSAGE has the useful option to have the grains from
the different sources appear in regular
rotation or in random order. It
can also cycle round a list of pitch (i.e., grain transposition)
values.
Because of these unique features, the older SAUSAGE program has been
recompiled for
Release 4 and included under 'CDP EXTRAS'. It is invoked
on the command line simply by
'sausage' and has its own HTML manual of
the same name.

Musical Applications

MODIFY SAUSAGE should be used when granular transformations need to
work with several input
soundfiles.

End of MODIFY SAUSAGE




MODIFY SCALEDPAN – Distribute sound in
stereo
space, scaling pan data to soundfile duration

Usage

modify scaledpan infile outfile pan [-pprescale]



Parameters

infile – input soundfile, MONO only

outfile – output soundfile

pan – pan data breakpoint file: positions sound
in a stereo field, from -1 (Left) to 1 (Right), or
beyond

-pprescale – gain reduction factor applied to
input level in order to avoid clipping (Default: 0.7)


Understanding the MODIFY SCALEDPAN Process

Sometimes it is useful to apply a process to many sounds,
slightly modifying that process to suit
the different durations
of the source files. This is especially useful when using
BULK PROCESSING
on the Sound Loom, so that new data files
do not need to be written for every single input
source.

MODIFY SCALEDPAN enables you to take an existing pan file, for
example with a panning pattern
you use often, and apply it
to a new sound. With bulk processing you could
apply it to
hundreds of sounds of slightly different duration.

Musical Applications

In breakpoint files, it can be important that the final value come
at or near the end of the input
soundfile. This can be particularly
significant in PAN operations. Besides enabling you to reuse a
favourite pan file with new sounds easily, the scaling also ensures
(automatically) that the
panning is properly timed with the duration
of the infile.

End of MODIFY SCALEDPAN




MODIFY SHUDDER – Shudder a stereo file

Usage

modify shudder infile1 outfilename starttime frq scatter
stereo_spread mindepth maxdepth minwidth
maxwidth



Parameters

infile1 – input stereo soundfile

outfilename – note that a '0' will replace the last character of your given outfile name

starttime – time when the shuddering will begin

frq – the average frequency of the shuddering

scatter – randomises the shudder events in time.
(Range: 0 to 1)

stereo_spread – positions the shudder events in space.
(Range: 0 to 1)

mindepth maxdepth – amplitude of the shudders – each gets a random value between MIN and
MAX
minwidth maxwidth – the duration of the shudder events in
milliseconds – each gets a random
value between MIN and MAX


Name of outfile must not end with a '1'

Understanding the MODIFY SHUDDER Process

MODIFY SHUDDER imposes tremulations on a stereo file, randomised both in time and space, so
that it appears to shudder. It is used in the shuddering noise band which then 'speaks' in Trevor
Wishart's Imago.

Note the relationship between frq and width:
the frequency per second of the shudders and the
width of
soundfile segment that is affected. Thus there could be
one shudder per second
involving 500ms (0.5 sec) of
sound, or one shudder per second involving 100ms (0.1 sec),
etc.
Depth and width MIN and MAX can be the same value.

Musical Applications

Although not unlike tremolo and vibrato, these 'shudders' are
designed to be more gestural,
more dramatic in character.

Suggestion: experiment with larger values for count (e.g., 10 or more), high values for
(amplitude) depth (e.g., 0.9 - 1.0), and smaller values for width (e.g., 0.07 - 0.1). Then try
slower shudders, such as count = 2 and width (both MIN and MAX) = 0.5.

End of MODIFY SHUDDER




MODIFY SPACE – Spatialise, or alter the
spatialisation
of, a soundfile

Usage

modify space 1 infile outfile pan -pprescale

modify space 2 infile outfile

modify space 3 inpantextfile outpantextfile

modify space 4 infile outfile narrowing


Modes

1  PAN: Position or move mono sound in a stereo field

2  MIRROR: Invert stereo positions in a stereo field (i.e.,
the two channels swap sides, left going
to right, and right to left)

3  MIRRORPAN: Invert stereo positions in a pan data file

4  NARROW: Narrow the stereo image of a sound

Parameters

infile – input soundfile to modify; Mode1 accepts a
mono input and produces a stereo output.
The other modes accept only
a stereo input.

inpantextfile – a text file containing time pan_position
data

outfile – resultant spatialised soundfile

outpantextfile – a text file containing time pan_position
data produced by the program, with the
pan positions reversed

pan – floating point value to specify location between
the pair of stereo speakers, or breakpoint
file of time pan
pairs. Range: -1.0 to 1.0; 0.0 is centre.

-pprescale – gain factor multiplier with which
to adjust the input level (Default: 0.7)

narrowing – make the stereo image less wide:

1 leaves the stereo image where it is
.5 narrows the stereo image by half
0 converts the stereo image to mono
negative values work similarly, but also invert the
stereo image

Understanding the MODIFY SPACE Process

Each Mode performs different but related operations on a sound:

Mode 1 PAN: Adjusts the amplitude levels of the
two channels so as to create spatial
illusions. A
time pan breakpoint file is used to create movement.
Mode 2 MIRROR: the data in the two channels swaps
sides
Mode 3 MIRRORPAN: this Mode acts on a breakpoint
file, reversing the pan data. Thus, if
the pan was from
Left to Right, (-1 to 1), it would become Right to Left (1 to -1).
Mode 4 NARROW: a way to restrict the spatial location
of a sound in the horizontal plane



Musical Applications

These functions are part of the basic toolbox.

Mode 1 PAN: control of sound in 3-D space has been
a basic procedure when composing
with 'sound' material, especially
when these are drawn from nature/the environment. The
assumption here is that you are thinking about the placement and
movement of sound as
an integral part of your compositional
process. In this case, we are dealing with building
these
procedures into the sound itself. There is a further aspect
external to the sound itself,
achieved by 'mixing' (superimposing
sounds and writing a new soundfile) and 'diffusion'
(sound
placement during playback achieved by manipulating the pan
controls on a mixer).
Mode 2 MIRROR: a utility for a quick Left/Right swap
Mode 3 MIRRORPAN: a utility to achieve Left/Right
swaps within breakpoint files
Mode 4 NARROW: this program allows you to narrow
the spread of a stereo field

Eventually, multi-channel facilities will open up the possibilities of
spatial movement enormously.
Until that point, everything has to be done
in stereo and mixed to create more complicated, e.g.,
4-channel effects.
For example, if working with a 4-channels and 4 speakers positioned 1 -2
in
front and 3 - 4 behind, oblique movement from 2 to 4 can be achieved
by a Left to Right pan
within the sound, and then using the mixing desk
to move that sound from speaker 2 to speaker
4.

End of MODIFY SPACE




MODIFY SPACEFORM – Create a sinusoidal spatial
distribution data file

Usage

modify spaceform outpanfile cyclelen width dur quantisation
phase



Parameters

outpanfile – output pan datafile produced by the program

cyclelen – the duration of one complete sinusoidal pan cycle

width – the width of the pan (from 0 to 1, full width)

dur – the duration of the output file

quantisation – the time step between successive space-position
specifications

phase – the angular position at which the pan starts. 0 is
full left and 360 is full right.


cyclelen and phase may vary over time

Understanding the MODIFY SPACEFORM Function

MODIFY SPACEFORM produces a pan breakpoint file (.brk would be the
correct extension) that
can be used with PAN or MODIFY SCALEDPAN.
Note that the duration of the file, i.e., the last
time in the file,
can be specified.

This function in effect swings the sound back and forth between the
speakers in a stereo field.
The speed at which it does so is controlled
by cyclelen and the location between the speakers is
handled
by width. If width is:

1, the full stereo field is used
0, no panning takes place and the sound is heard
equally (without movement) from both
Left and Right speakers.
0.5, the swing is from halfway between the Left speaker
and Center to halfway between
the Right speaker and Center, i.e.,
from -0.5 to + 0.5

The quantisation parameter determines the number of intermediate
pan positions there will be
during each swing around the loop. 0.1
appeared to produce a good result. The phase sets where
in
the stereo field the sound will be heard at the beginning of each
repeat cycle, from whence the
movement will emerge.

Note the sophistication that can be brought to the spatial movement
when breakpoint files for
cyclelen and phase are
employed.



Musical Applications

A slowly cycling panning motion can be created, generating a sense of an object rotating in
space, e.g. a marble rolling around the rim of a huger glass bowl in front of you. This spatial
image can be enhanced by making the level increase on the left-to-right motion, and decrease on
the right-to-left motion (or vice cersa), suggesting that the sound moves towards, then away
from you, as well as from right to left. This perception can be enhanced by adding treble-cut
filtering and/or subtle reverb to the 'more distant' part of the motion. More generally speaking,
sound streams in a piece can be differentiated and characterised by their spatial motion.

Also see MODIFY SPACE (PAN is Mode 1) and
MODIFY SCALEDPAN.

End of MODIFY SPACEFORM




MODIFY SPEED – Change speed (& pitch) of
sound

Release 6: The multi-channel equivalent of MODIFY SPEED is STRANS MULTI.

Usage

TRANSPOSITION:

(NB! - Transposition is always relative to the original speed of the soundfile)

modify speed 1 infile outfile speed [-o]

modify speed 2 infile outfile semitone-transpos [-o]



INFORMATION:

modify speed 3 infile inbrkfile [-o]

modify speed 4 infile inbrkfile [-o]



ACCELERATION / DECELERATION:

modify speed 5 infile outfile accel goaltime
[-sstarttime]



VIBRATO:

modify speed 6 infile outfile vibrate vibdepth


Modes

1  Vary speed & pitch of a sound, constant or time-varying

2  Vary speed & pitch by a constant or time-varying (fractional)
number of semitones

3  Get information on varying speed in a time-changing manner

4  Get information on time-variable speed change in semitones

5  Accelerate or decelerate a sound

6  Add vibrato to a sound

Parameters

infile – input soundfile to process

outfile – resultant soundfile

speed – transposition value (ratio) expressed as a
floating point multiplier. See Chart
of Ratios
covering up and down 2 octaves. NB: use 1.0
for no transposition.

semitone-transpos – transposition value in positive or negative
number of semitones; e.g., 12
raises the sound by an octave, and -12 lowers
it by an octave. NB: use 0 (semitones) for no
transposition.

Both speed and semitone-transpos may vary over time.

accel – multiplication of speed to be reached by goaltime
– i.e., a transposition ratio

goaltime – time in outfile at which the accelerated
speed is to be reached.

If the infile does not end there, it continues
to accelerate.
If the infile finishes before goaltime is
reached, the outfile won't reach the specified
acceleration
value.

file:///E:/CDP/DOCS/!PRINT/cgromc.htm#STRANSMULTI
file:///E:/CDP/DOCS/!PRINT/cgroinfo.htm#UNITSRATIO


starttime – time in infile / outfile at which the
acceleration begins

vibrate – the rate of vibrato shaking in cyles-per-second
(Range: 0.0 to 120.0)

vibdepth – vibrato depth (pitch shift from centre) in [possibly
fractional] semitones (Range: 0.0
to 96.0)

Vibrate and vibdepth can vary over time.

-o – breakpoint times are read as times in the outfile.
The Default is to read them as times in the
infile


Understanding the MODIFY SPEED Process

Speed modification processes change the duration and the
pitch of the sound together. Thus a
faster speed causes a
higher pitch, a slower speed a lower pitch.

MODIFY SPEED offers a range of functions which affect the speed of the
soundfile. Perhaps it will
be most often used for transposition. Modes
1 and 2 both accept either single values or the
names
of time-varying breakpoint files with time transposition pairs.

The single values act as constants and transpose the whole soundfile
up or down by the given
amount. In the breakpoint files, transposition
can be almost instantaneous (almost same time,
different
transposition value), or gradual, creating glissandi (different
time, different
transposition value). No transposition between
times is a third possibility (different time, same
transposition value).
These three possibilities are illustrated in the table below:

Time-varying transposition (using ratios)

time speed Comments

0.0 1.0 No transposition: start at the original pitch

1.0 1.498 Over 1 sec., gliss upwards through a Pefect 5th

3.0 1.498 Hold this new level for 2 sec.

3.0001 0.5 At 3 sec., (almost) instantly drop one 8ve below
the original pitch,

  i.e., to 19 semitones below the previous position

6.0 1.0 Spend the next 3 sec. glissing back to the original pitch

The program will not accept exactly simultaneous values, giving a
message to the effect that the
times 'are not in increasing order'.
To get around this, add a tiny bit to the second time – as in
the example – so that the 2nd is nominally later than
the 1st, but virtually simultaneous.

IMPORTANT! Note that transposition changes are always relative
to the original
speed of the soundfile, not its current output speed.
Thus, in the example above, the
soundfile glisses up a perfect
5th (from speed 1.0 to speed 1.498). With
the next
ratio, 0.5, the soundfile will drop to half of its
original speed, and consequently to
the octave below its
original pitch.



Sometimes, you may need certain transpositions to occur at specific
times in the outfile. The -o
flag makes this possible.
Thus, changing the speed of a file will alter it's duration, and,
especially
when the speed change itself varies in time (using a
breakpoint file), it will be difficult to
determine at what time
events in the output sound will appear. For example, if you specify
a
speed of 0.5 at time 2.0 with the default mode, the
speed of the file will reach 0.5 after 2
seconds of the INPUT file
have passed – but because the speed of the file has been changed,
this
will not be at 2.0 seconds in the OUTPUT file.
Therefore, if you want the speed to reach 0.5
at time
2.0 in the OUTPUT file, you should use the -o flag.

Musical Applications

Transposition which also changes the speed, and therefore the pitch, of
the soundfile greatly
alters the character of the sound. It is often
very interesting to hear what a sound will be like 1,
2 or even 3
octaves below its original pitch. Deep, rich tones can be achieved
in this way. These
tones can slowly rise or descend if created with
a time-varying breakpoint file e.g., moving an
octave up or down over
the time of the whole sound (airplane takeoff sounds, etc.).

The graphic program Brkedit (PC systems) can create exponential
or logarithmic breakpoint data,
so glissandi in MODIFY SPEED can increase
or decrease in speed as well as move in a steady
(linear) manner.
Alternatively, this can be done with Mode 5.

Vocal material is very sensitive to pitch changes, so upwards
transposition of this type will
produce fast, squeaky voices, like
the mice trio in Babe, and downwards transposition will
produce slow, drawn-out ponderous voices.

The vibrato created in Mode 6 is a frequency modulation. Given
the very wide ranges allowed,
this function is immensely powerful. A
slow vibrate with a large vibdepth will swing the original
sound wildly – increase vibrate and it really 'flaps in the
breeze' (like a flag in the wind). A fast
vibrate with a reasonably
tight vibdepth, e.g., a minor 3rd, will produce a
fluttering effect.

Altogether, a great program to explore and use to push beyond accepted
conventions.

NB For transposition which alters the pitch without altering
the duration of the sound, use
REPITCH
TRANSPOSE (spectral envelope moves) or REPITCH TRANSPOSEF (original spectral
envelope is retained).

Also see: STRANS MULTI, the multi-channel version of this function.

End of MODIFY SPEED


file:///E:/CDP/DOCS/!PRINT/crepitch.htm#TRANSPOSE
file:///E:/CDP/DOCS/!PRINT/crepitch.htm#TRANSPOSEF
file:///E:/CDP/DOCS/!PRINT/cgromc.htm#STRANSMULTI


MODIFY STACK – Create a mix that stacks
transposed
versions of source on top of one another

Usage

modify stack infile outfile transpos count lean
attack-offset gain dur [-s]



Parameters

infile – soundfile to stack

outfile – resultant stacked soundfile

transpos – when numeric, transpos is the transposition in semitones between successive copies,
OR, as a file, it is a
set of transposition values, one for each stack component

count – the number of copies in the stack

lean – the loudness of the highest component, relative
to the lowest (may be > 1)

attack-offset – adjusts the time at which the attack
of each sound occurs; called attack-time in
Sound Loom.
gain – an overall amplifying gain factor on the output
sound; some reduction (less than 1) may
be needed. (It may also be > 1.) Range: 0.1 to 10

dur – how much of the output to make (a proportion, from 0 to 1)

-s – see the relative levels of the layers in the stack

Understanding the MODIFY STACK Process

New sounds can be developed from existing sources by stacking transposed copes of the original
on top of each other. This is particularly successful where the source
sound has a clearly defined
attack at or near the start of the sound and then dies away gradually. If the copies are lined up
in such a way that their attacks coincide exactly, the new sound will psycho-acoustically
merge into a single sound event with harmonic content (rather than a chord made up of several
sounds). The meaning of this is very precise: one is lining up the soundfiles at their perceived
beginning, i.e., its attack, not the start of each soundfile. This is achieved by adjusting the start
times of the transposed soundfiles.

Trevor Wishart has clarified what happens with this program as follows:

"For example, suppose you start with a source with its attack at 0.5 sec, and your
stack transpositions are 0, 12, 24 semitones (i.e. zero, 1 octave up, and 2 octaves
up). If you tell the process that the attack is at zero (which it isn't!!!) then the
transposed sounds in the output will be lined up to synchronise at zero time, but you
will actually hear the event attacks at .125 (24 semitones up), .25 (12 semitones
up), and 0.5 seconds: because the transposed-up sounds get shortened in time, the
attacks of the higher transpositions occur earlier in the output sound. If, however,
you declare, correctly, that the attack is at 0.5 seconds in the source, then
all the sounds will line up with their attacks at 0.5 seconds in the output.

"In this example, where all the transpositions are upwards, the attack in the output is
still at 0.5 secs as described.



"On the other hand, if we used a stack with 2 DOWNWARD transpositions by
octaves(0, -12, -24), in order to REACH the attack of the most-slowed-down sound
we have now to wait 0.5 x 4 = 2 seconds. Telling the program that the attack (in the
original sound) is at 0.5 seconds will STILL line up all the attacks correctly, but they
won't happen until 2 seconds into the output sound, as you can't reach the attack of
the slowest sound before 2 seconds have elapsed.

"So this parameter is intended to tell the process where the attack in the original
sound really is. However, you can get interesting effects by giving a slightly incorrect
value, sometimes producing rapid pitch-slide attacks in the output."

It is important, therefore, that you accurately identify the time-location of the attack of the
sound and work with this information, either completely fusing the sounds by making their
attacks coincide, or introducing slight timing differences for various musical reasons, such as a
sense of acceleration within a sound. Thus you can intentionally misinform the program about
where the attack is in order to get different kinds of output. If you give an attack time that is
only slightly wrong, this can produce interesting new attack characteristics in the original. If the
attack time given is completely incorrect, the outcome could be anything.

In the illustration below, the attack comes at 1 second after the start of the sound. A downwards
transposition by 1 octave doubles the length of the sound, causing the attack to come at 2.
Downwards transposition by 2 octaves quadruples the length of the sound, causing the attack to
come at 4.




If we tell MODIFY STACK that the attack comes at the beginning of the sound (attack = 0),
we get the upper diagram, with the time between attacks slowing down.




If we tell the program (correctly) that the attack is at 1 second, then all the attacks are
aligned at the 4 second mark, as in the lower diagram.



The dur (duration) parameter is the proportion of the sound you want to keep. 1 keeps all of it,
0, none of it, and 0.5, half of it. This is to enable you to truncate the output when very low
transpositions would make the output excessively long.

Octave transpositions are particularly effective at
'strengthening' a sound source, but any
harmonic structure
may be used. Alternatively, the attacks may be very slightly
staggered to
generate downward (or upward) sweeping glissandi,
or very tiny transpositions may be used
introducing delay
effects into the output.

Musical Applications

MODIFY STACK is a very important program. It enables you to
construct 'larger' versions of
sounds by superimposing transposed
versions on top of one another. Furthermore, it does this in
such a way as to maximise the fusion of the layered sound by synchronising the attacks. This
relates to a basic technique of orchestral scoring (where it is called 'doubling'). It is a form of
automatic mixing involving one soundfile.

Because of the way the program functions, this is, however, quite a different process from
transposing and mixing sounds to produce chords. (Doing this
in the Spectral Domain, where
transposition can be done without affecting
duration, still has a place: see, for example, the
duplication possibilites in SPECTWIN.) Here, if the attack points are made
to coincide, the new
sound-object is an integral whole,
rather than a 'chord' made up of the transposed stack
components:
that is, the components fuse and cannot be separated in perception, as they
can
with a chord played, for example, on a piano keyboard.

Also note that, as a Time Domain process, the higher transpositions end sooner than the lower
ones. Use Spectral Domain transpositon along with SUBMIX MIX to assemble transposed versions
of the same sound when equal length is important.

Very low transpositions could produce an extremely long output.
The dur parameter enables you
to specify a much shorter
outfile length. You can usually get an idea of the harmonic
content of
the output from the first few seconds.

Also see: SPECTWIN

End of MODIFY STACK




























Last Updated 3 Sep 2016 -- HTML5 version

Documentation: Archer Endrich, revised R.Fraser

© Copyright 1998-2015 Archer Endrich & CDP


file:///E:/CDP/DOCS/!PRINT/ccombine.htm#SPECTWIN
file:///E:/CDP/DOCS/!PRINT/ccombine.htm#SPECTWIN

